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ANALYSIS OF A PHASE-LOCKED LOOP
AND A GENERAL FEEDBACK SYSTEM WITH A LIMITER

H. J. Kushner
Y. Bar-Ness

1. 1Introduction

Consider a (linear or nonlinear) dynamical system with wide -
band noise input. 1In communication theory, it is often of con-
siderable interest to approximate such systems by diffusion models
so that, e.g., Fokker~Planck and other "diffusion"” process tech-
nigues can be used. In (11, a general and powerful method for
doing this was developed. Roughly, the input noise process is
parametrized by ¢ and as € + 0, the bandwidth (BW) goes to
infinity, while the power per unit BW approaches a constant. The
process which corresponds to the limit of the sequence of measures
of the output or system state processes {x°(-)} is found by tech-
nigues of weak convergence theory.

The method is particularly useful when the noise (and/or
signal) is processed nonlinearly. In order to illustrate the
method, three applications were developed in [l}: (a) a phase
locked loop (PLL); (b) an adaptive antenna array; and (c) output
of a hard limiter followed by a filter. Difficulties with some
of the heuristic methods were avoided. In fact, many of the more
heuristic arguments for problems (a), (b) use (implicitly or
explicitly) a “"wide band assumption"”.

In this paper a very interesting and more difficult new

application, essentially a combination of (a), (c) above, is
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discussed. There is a well-developed classical theory of PLLs
{21, [3). Recently, a strong practical interest in PLLs that use
either nonlinear filters or static nonlinearities has developed
[4], [5) and there have also been prior indications (based on
simulation studies) that use of certain nonlinearities could
actually improve the loop's performance. The improvements in
performance that are possible with the use of a hard limiter type
nonlinearity will be demonstrated theoretically, via the method
of (11, and confirmed by simulation. It seems to the authors
that there are no current alternative methods for the treatnent
of such problems in a rigorous or readily rigorizakle but intuitive-
ly convincing manner. A number of interesting ideas and results
appear in {5], but the method requires an "equivalent white
noise"” input, and would seem to have great difficulty (even with
a heuristic treatment) with the problem treated here. However,
the general conclusions of [5] are consistent with our own.

Our development will be rigorous in part and heuristic in
part. It is partly heuristic because we seek to simplify the
analysis to avoid some of the more onerous calculations. But
even there, the development will be guided by the intuition
developed in (1] for the properties of the simpler systems
treated there. The point is that, used even heuristically,
the method provides an interesting and powerful tool for getting
the appropriate diffusion approximations to many nonlinear
systems whose (even formal) treatment would be much more dif-

ficult by alternative methods.
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The results and method are also guite important in control
theory. There the filter and VCO would or could be replaced by
general linear or nonlinear dynamical systems and the multiplier
by an adder. 1In fact, for this case, our results are rigorous, and
indicate the important role which a hard limiter can play in improv-

ing a systems noise immunity when the noise is small but the bandwidth

is large.

We are concerned with the systems of Figures 1 and 2, the
first (resp., second) being a first- (arbitrary, resp.) order

PLL. By suitable choice of D, E, C, G in Figure 2, any zonal

filter can be well approximated. In Figures la, 2a we have a
hard limiter, and in Figures 1lb, 2b an approximation to a hard

limiter. n®(.) denotes the input noise, A®(-) the estimate of

the "signal" phase 6(-) of the input signal A sin(wot+e(t)). The

general type of approximation ga(°) which is used for g(-), the hard

limiter, is graphed in Figure 1lc. The treatment of the general

case of Figure 2 is almost identical to that of the simpler

R T T [ P T Y YT Ay oy 7 e

case of Figure 1l; one only carries a few extra terms (which are
not hard to handle in the development). In the interest of
simplicity, derivations for the first-order case will be given;

the results for the general case will be only stated. The

results indicate some rather surprising and important advantages
of the use of the limiter; for small noise power, the acquisition
range and tracking ability are increased, and acquisition time

decreased, as compared with the case with no limiter. These
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advantages are borne out by simulations, and have important
analogues in the automatic control problem also.

In Section 2 various .ssumptions are given and in Section 3
a result of [1] is applied directly to get a limit approximation
in a heuristic manner. The limit seems to capture the essential
properties, and it is compared with the comparable equation for
the classical first-order PLL. Section 4 discusses some simula-
tion results. The Appendix contains various parts of the detailed

development.

Note that it makes no mathematical or physical sense for
n®(-) to be a white Gaussian noise. Owing to the properties of
white Gaussian noise, the output of the limiter would be zero.

So we must deal with a wide band input.

2. Assumptions

The noise model. For the sake of concreteness in the cal-

culation and in order to be able to use the results of (1],
Section 6, it is supposed that n€(t) = yE(t)/e where ye(t) =
y(t/ez) and y(.) is a stationary Gaussian process with correlation
function 02 exp - ajt|, a > 0. Reasons for this scaling are dis-
cussed in [(l], Section 2 and in [6). It is a convenient and

common way of getting a noise process r€(.) whose spectrum

converges (as € » 0) to that of a white noise with a constant

power per unit bandwidth, namely 202/a.It is, perhaps, the

simplest model that could be used for our wide band approxima-

e e
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tion technique. 1In order for n®(-) » "white Gaussian noise" or
fne(s)ds + Wiener process as € * 0, a contraction of the time
gcale and an increase in the amplitude of y(-) is required (as
€ + 0). This is discussed further in the reference. The partic-
ular form of y(-) was chosen partly for convenience, in that it
enables us to use an available result. Any Gaussian process

whose correlation function decreases exponentially can be used,

but the v2 1In 2/a coefficient in (3.1) and in derivative expres-
sions would be replaced by a different coefficient although the
general result of the sequel (the improved tracking .bility for
small power per unit BW with the use of the limiter) would remain
true.

In the classical case (e.g., [2, 3]), a somewhat similar "limit"
assumption is made; although the noise n®(-) is not explicitly
parametrized, and no limits are explicitly taken, in the various
approximations which are made it is implicitly or explicitly assumed
that the BW is "very wide" (this assumption is used in an intuitive
or formal way only, in the classical case). For the system without
the limiter, much weaker assumptions on n®(-) can be used [1] without

over-complicating the development.

The scaling Le' If Le = L, a number not depending on ¢,

then a heuristic "averaging" type of analysis implies that the

"effective gain" of either the Leg(-) or Lega(-) nonlinearities
goes to zero as € + 0 (or, equivalently, as BW +» «), Thus in

any "limit" analysis, L. must increase as € decreases. 1In any
particular practical system, operating in a fixed signal and noise
environment, one particular value of L = Le will of course be used.
Other things remaining equal, as the BW of the input process in-

creases (without the power per unit BW degenerating to zero, in
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the "pass band"), this value of L will have to increase. How this
value is to be chosen in any particular application is not impor-
tant here. What is important is that €L, must converge to a
constant L > 0 as € » 0. (See Appendix.) This property holds

if y(.) is any stationary Gaussian process. So L. = L/e will

be used in the limit analysis. 1If eEL, > 0 as € » 0, the limit

system will be an open circuit.

3. A Heuristic Analysis

Consider the system of Figure la. 1In (1], Section 6, the
limit equation (as € + 0) for the output process xe(-) of a hard
limiter of level L with input s{t)+nf(t) (s!-) being piecewise

continuous, but arbitrary otherwise - it is an input signal) ia

derived. The limit process has the same distribution as the diffusion

(3.1) dx = /277 Sc‘,—t) dt + /2 In 2/a dB,

where B(-) is (and always will be in this paper) a standard
Wiener process. The following heuristic derivation, for which
greater justification is provided in the Appendix, captures the

essential effects.

At point (a) of Figure la, the signal is

(3.2) Ka Sin(w0t+0(t))cos(wot+é€(t)) + K cos(wot+§€(t))n€(t)

= ae(t).

Interpret v/|v| = 0 if v = 0 (let sign 0 = 0 for definiteness).




At (b) in Figure la, we have

Ae

(*)  2%(t) = 65(t) = 2 sign[ae(t)/Icos(wot+§e(t))|].

Supposing that the ge(-) variations are “slow" compared with those
of nE(-), drop the 6% (.) terms in the noise coefficient

‘ ne(t)cos(wot+§€(t))/Icos(wot+§€(t))| of the argument of the function

on the right side of (*). This is the main simplifying assumption

and will be discussed further below. There is no need for this step

if the multiplier in Fiqures 1 or 2 is replaced by an adder (what-

ever replaces the VCO) as in the control problem. The noise term

21 in the argument of the function on the right side of (*) is now
sign(cos wot)ne(t). On substituting t/e2 + t, this becomes
sign(cos woezt)'y(t)/e. For small € and over a finite interval,
the statistics of this process are essentially those of y(*)/e.
As will be seen in the Appendix, it is the statistics in the new
scale which determine the correct limit. Thus, since we are con-

cerned with small €, this suggests that the sign(cos w ezt) term

0
can be replaced by unity without altering the limit. Finally,

making these substitutions we have the formal approximation:
sign(a®(t)) % sign A sin(w0t+9(t))sign(cos(m0t+§€(t)) + y&(t) /e)

sign(sf(t) + y®(t)/el,

m

where s®(.) is defined in the obvious way. With this approxima-

tion at point (b) in Figure la, we have
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(**) 2°(t) = 8°(t) = 2 sian(s®(t) + yE(t)/e].
Next, ignoring the fact that s€ () depends on 65(->, ané¢ formally

using the limit result (3.1), yields that the limit (as € + 0) of
{6%(-)} has the same distributions as the process 6(-) given by
(we replace the 6°(+) inside the sign by the "limit" §(-) also)

A sin(wyt+8(t)) sign[cos(w0t+6(t))1

(3.3) as (v = W2/m - - .l at

ln 2
+L——a——-dB.
Greater justification for the limit representation (3.3) will be

given in the Appendix. Equation (3.3) has a unique solution (in

the sense of measure), despite the discontinuity [8]. Also, the

argument concerning setting the sign cos(wot) term equal to unity can
be justified in the sense that it does not affect the limits. The
limit (3.3) can be justified if we start with (**), use the approx-
imation ga(-) instead of+ g(+), and then let o -+ 0 as € » 0. See

the Appendix. The main difficulty lies in ignoring the 8¢ depen-

dence of the coefficients of n®(t). This dependence gives rise to

what is usually called the "correction term”, an additional drift
term which should appear in (3.3). Purely formal calculations sug-
gest that this term "oscillates with wo", and that it would average
out if either We is large or a narrow band filter is used, as in

Figure 2. This is, of course, what happens to the correction term

fThe reason for the use of the approximate hard limiter g,(-) in

the analysis in the Appendix is that our approach requires a differ-
entiable nonlinearity. 1In the Appendix, we get the limit when € -+
0Oand a =+ 0 as € + 0. This is a reasonable point of view.

e
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in the standard case [l1, Section 4], but here we are not yet able

to explicitly evaluate this term.

3.1 Approximation of (3.3). Let us now approximate (3.3) by

a simpler system. The justification of the approximation (for

large wo) appears in the Appendix. First expand g(a) = sign(cos u)

n
q, cos ku over [-m,m], where d, = 2 [ £(u) cos ku du =
0

Zk=l ']

(4/wk)sin kn/2. Thus Aok = 0, all k, and

~ had - k A
sign(cos(w0t+9)) = % k£0 %7%%TT cos(2k+1)(wot+e)

and

sin(uyt+0)qluyt+d) = () Fsin(6-8)+sin(2ugt+o+d))

L k
4 . (~1) a
+ ~ Sln(w0t+6)k£lT§EIIT'COS(2k+l)(w0t+e)

1}

%(sin(e-ﬁ)) + Flug,t,8,8).

—_———. _

Now, we can take either of two approaches. The simplest is
simply to assert that F, which contains the "high-frequency" terms,
will be filtered out. An alternative, which is developed in the
Appendix, is to use the averaging method of [1] (see Section 4

there) again, but where the 0(.-) of (3.3) is now parametrized

by w, and to show that, as w; » =, the §(+) converge weakly
(in C[0,»); see Appendix) to the solution of the "averaged

equation"

L.
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(3.4) af = n(3)3/2 Asinlo-0) g, 210 7 4

(8} a

Equation (3.4) is the desired limit equation. Suppose, for
purposes of representation, that 6(-:) is differentiable. Then,

with ¢ = ¢-9,

(3.5) d¢ = éat - L(%)3/2 é—E%B—Q at - LJZ—gﬂ—Z aB.
See Appendix 3 for the details.

The general filter case. "The case of Figure 2 can be

dealt yith similarly, to obtain

(3.6) d¢ = 6dt - Cvdt - LG[%(%)B/zsin ¢ dt + __%2_2 aB],

_ A2 3/2 . /Tini
dv = Dvdt + LE[G(F) sin ¢dt + — dB].

3.2 Limit equations for the classical case (no limiter). For

comparison purposes, only the first-order case will be studied.

The classical derivation appears in [2], [3]. A derivation of the ‘

limit as input BW -+ ~ (an assumption also made for the classical
derivation) is in [1], Section 4. In that reference, nt(-) was a
more general process than used here. Specializing to the ne(‘)
used here, we have (1, eqn. (4.3)]: For fixed Wy s 6% () =

e(-)-ée(-) converges weakly (in C[0,»)) to the solution of the

diffusion equation
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(3.7) dé(t) = 8(t)dt - Misin ¢ () + sin(0(t)+8(t)+2a t) lat

2.2
+ o K

cos (wyt+6(t)) sin(w t+6(t))dt
- K/%cicos(wot+6(t))d8 .

As wy > ¢(-) (parametrized by wo) converges weakly (in
C(0,x); see [l]) to the solution of

(3.8) d¢ = 6dt - 3= sin ¢ dt - K °— aB.

AK
2 vYa

The third term on the right of (3.7), the so-called "correc-

c ~E
tion" term, arises due to the non-independence of n®(t) and 8%(¢).

The classical derivation ignores this dependence. But, as Wy * ®s
the term is "averaged out", whether or not a filter is used in the
PLL. In fact, by our neglect of the 6¢ dependence of the coef-
ficient of “s(_) in the argument leading to (3.3), the correction

term does not appear.

3.3 Comparison of (3.5) and (3.8). L in (3.5) plays the

role of K in (3.8). The salient and surprising difference

concexns the role of . In (3.8), it affects the noise term

(proportionally). 1In (3.5), it affects the drift term (inversely).

It is thus expected that for small o, the limiter would imgrove

the acquisition and tracking properties of the PLL.

VIO W —

o e d s o




-14- |

Let 6 = w,, a constant, and linearize the sin in both (3.5)

ll

and (3.8) about ¢ 0. Then the asymptotic (linearized) mean

square values E(B-é)2 are

2
.. 2,73 0O n,3/2 o
(3.9) (limiter (3.5)) wl(z) ;2—1\—2‘ + L (1n 2) (7) A
3
2.2
w,0
= 3.87 % 5 + 1.36 %9 .
L°A a
”
4w§ ko2
(3.10) (no limiter (3.8)) === + =o- .
K2A Aa

The major shortcoming of the first-order system with no limiter is

its poor acquisition ability, irrespective of 0, a shortcoming

which the use of the limiter overcomes when ¢ is small, and the

bandwidth large. The same relative advantage holds for the general

case of Figure 2, as we can easily see from (3.6).

3.4 An alternative heuristic development. In order to gain

some intuitive feeling for the effects of different approximations
of the input to the limiter, let us now suppose that the input
(3.2) to the limiter is replaced by the "natural approximation"
(not always so natural in the nonlinear case)

K

(3.11) %5 sin (0(t)-85(t)) + = nf(v),
7z

where we get the /2 by "averaging" the square of the coefficient
of ne(') and then taking its square root, while ignoring the coef-

ficient's 6° dependence. Then, by using the argument which led to

(3.3), we get the limit equation




(3.12) d¢ = vdt - AL S @ q¢ - 1
Ji o

The ratio of the drift coefficient in (3.5) to that in (3.12) is
2/2/m = 0.9. Thus, the process (3.12) would be expected to have

smaller errors - but not by much - and, otherwise, the same

qualitative properties as (3.5) has.

3.5 An automatic control problem. The results are directly

applicable to the typical feedback situation of Figure 3., s(°)
is the signal or informational component in the input, rf(.) is,
again, the wide-band noise of Section 2 and F(-) and G(:) are
smooth functions with at most a linear growth rate. The same

formal argument which led to (3.3) yields (no dropping of the

56(-) in the noise coefficient is required, as was done in the PLL
case in order to get (**) there) that {vE(-)} converges weakly to

the solution of

(3.13) dv = F(v)dt + LDES—(—QgM./T—z-: dt + ,/2—-611“_2 dB].

The 1/0 effect in (3.13) would seem to be a rather impor-
tant result. The result is not entirely expected and undoubtedly
has many useful applications to control problems when the noise
is small in power per unit BW, but of wide BW. For this problem,

the method in the Appendix rigorously justifies (3.13).
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4. Simulation Results

The main purposes of the (digital) simulations were to verify
the effects of the 1/0 in the drift term of the limit equation
for the "hard limiter" case, and to get some rough idea of the

"rate" of convergence to the limit, as well as a rough comparison

with the case of no limiter. Consistent with these goals, and
in order to avoid (time-scale and length of simulation) problems

in simulating either (3.3) or the original system with the Wy

present, we simulated the simpler cases of Section 3.4, where
(3.11) appears at the limiter input. Typical samples of the results
i appear in Tables 1 and 2. The quantities are sample means and

variances over a 300 time unit interval.

Discussion. From Table 1, it can be seen that the limit
equation results are very close to those of the actual systems.
The results are closer for the no-limiter case, and for the larger

: value of 0. The presence of the limiter nonlinearity seems to

slow down the convergence. (Of course, even withcut the limiter,
the system is nonlinear, but "more softly so".) The quality of

the tracking ability is demonstrated by Table 2. For € < 1/2,

L o

the actual system performs quite close to the limit system. It

is remarkable that even for larger values of €, the performance
with the limiter can be more favorable (than that without the i
limiter) than suggested by merely comparing the trve limits. k

The relative contributions of the means and variances are
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(qualitatively) exactly as expected. The decrease in mean square
error as o0 decreases, as sugcested by the 1/0 factor in (3.5),
is clearly demonstrated by Table 2. As noted above, the useful
effect of the limiter (as quantified by the 1/0 factor in the
limit equation) is very clear, even for ¢ = 1, Owing to the fact
that the maximum slope of sin u is at u = 0, the actual data are
all smaller than those predicted by (3.1) (and the appropriate
analogue of (3.8) for the system (3.12)).

The linearizations (3.10) and the analogue of (3.9) for the
system (3.12) give conservative estimates of the numbers in the
tables. This is because the linearization results are obtained

by replacing sin ¢ by ¢ in the dynamics, a "stabilizing" change.

i, ittt i Rnat il
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€ =1/2
limit
€ =1
€ =1/2
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No limiter Limiter
sample sample sample sample
mean variance mean variance
o= .5
.11 .30 .06 1.0
.11 .20 .02 .38
-.04 .27 .02 .82
o= .25
.05 .068 -.07 .40
.05 .046 .05 .12
-002 .062 -002 023

Table 1. First-order loop, 6(t) = eo, a constant.




No limiter

sample
mean variance

.59
.62
.58

.55
.54
«57

sample

.46
.24

.58

.060
.045
.07

Table 2.

-20-
Limiter
g=1/2
sample sample
mean square sample sample mean square
error mean variance error
.81 .26 .95 1.02
.62 .15 .47 .49
.84 .23 .91 .96
g=1/4
.37 .14 .34 .36
.33 .086 .10 .10
.40 .12 .26 .27
.14 .29 .31
First-order loop, 6(t) = 6(0) + t/4.
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and n;(t) = y;(t)/e. In order to "smoothe" the sign(cecs) in
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Appendix l: Simplifying the Problem

Modifying the problem. The given problem will be modified

in several ways, some insignificant, and Theorem 1 of (1] applied

to illustrate the type of argument required to justify the limit
equations. First, owing to mathematical necessity, we must work
with a smooth but arbitrarily close approximation to the hard limiter,
I.e., the system of Figure 1 will be used. The object is to show
that the diffusion approximation is arbitrarily close if € is

small and 94 is close enough to a hard limiter. When we discuss
limits as € + 0 and a -+ 0 (i.e., as BW » = and ga(-) + hard limiter),
we mean that ¢ - 0, o + 0 simultaneously with € + 0 "sufficiently"
faster"; in particular that /e/a - 0 as € + 0. This particular
ratio is due to the method used and is probably not generic in any
sense. ga(-) is required to have a continuous first derivative,
which is bounded by C/a in [-a,a] (the derivative is zero out of

this interval), where C always denotes a constant, the value of

which may change from usage to usage.

Let yo(-) denote a stationary Gaussian process. independent

of y(+), and with covariance ogexp -at. Define y;(t) = yo(t/ez)

(3.3), we add Kng(') to the signal at the input to the noniinear—
ity. The process Kng(o) converges to a white Gaussian noise with
spectral density Kzog/a as € + 0 and (as will be seer) has neglig-
ible effect on the result when og is small. So the modification

is harmless and is mainly for mathematical convenience.

With this addition, the input to the nonlinearity ga(-) is
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(A1) ag(t) = KA sin(w0t+6(t))cos(wot+6€(t))

+ K(cos(w0t+§s(t))ne(t)+Kng(t).

Two additional alterations will be made, the first one harm-
less and merely for convenience in the analysis, the other more

important. Define BE (t) = [og + ozcosz(w0t+§€(t))]'l/2/x and write

(a2)  8%(t) =

o

g, (B (t)ag (£)] + T 6g, (),

where
8g, (£) = g, (ag(t))-g (B (t)ag(t)).

owing to the positiveness of 8%(-.), 6g,(t) # 0 only vhen the argu-
ment of ga(-) is less than some Ca in absolute value. The proper-
ties of y(+) and yo(-) imply that there is a real C such that
E[Sga(t)| < Cae. Partly due to this, the deletion of the 8g (-)

in (A2) does not affect the limit, and we drop the term from (A2).

We now have the system 68 = Lga(Be(t)ag(t))/e. For the
final alteration, note first that the noise term in the argument
of g () above is LloZ+0%cos (wyt+6%(£)) 171/ % (cos (wyt+8S (£))yE (b)
+yg(t)]. Change time scale t/e2 + t. As will be seen; the
calculations which concern the shape of the limit are in the new

time scale. In this scale, the noise term is

2

™|

[o§+02cos(woe t+§€(ezt))]_l/2[cos(woe2 t+5€(€2t))y(t)+yo(t)J-
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If ée(’) does not become "too wild - too fast" as € + U, then

for small € the term has essentially the properties of a station- L

ary Gaussian process y(+) with mean 0 and covariance e—at; and

we replace it by such a process. Such a facile argument does not
justify the replacement (for the PLL case).

Dropping the woezt part is unimportant and does not affect

the result. Dropping the 8¢ dependence is important, because it

eliminates the correction term. Even without this alteration,
{6%(-)} can be shown to be tight* in D[0,»), but the details are
quite lengthy and will not be given. The main probler (apart
from the length of the calculation) is that we have not been able
to get a nice expression for the correction term. HOwever, some
formal and rough calculations suggest that its deletion does not

substantially alter the system's main qualitative properties, and

that the effects of the deleted term are small for larce Wg e

In the control theory problem of Figure 3 where the multiplier
is replaced by an adder, the input noise is not multiplied by a

state-dependent function at the input, the actual value of the

input to the nonlinearity can be used in lieu of (Al) and there is

no need to drop any terms. Our method is then rigorous.

Finally, the system to be analyzed is

(a3)  8%(t) =

™

ga(s(t,ée(t)) + y& /e, ] L

x : x
[$?$ tegmsnology 1s that of weak convergence theory (BiTiingsley
hand.lim£;£°;nésaizerigﬁiecggtieal-valueg f;nctions which have left-
) . nuous, and whi i

Fogology. By tightness, we mean thaé the meagﬁrZS:h:: i €7?$§1ate
é?ouges on D[0,») are weak* sequentially compact. Later we use

+T] and C[0,»), the spaces of real-valued continuous function
(on [0,T] or [0,»)) with the sup norm topology. ®




where ; €(e) = ;(t/ez) and s(t,8%(t)) = ABe(t)sin(w0t+e(t))

cos(w0t+§€(t)).

Aggendix 2

Derivation of the limit (as € + 0, o » 0) of the processes

{6€(-)} of (A3). Theorem 1 of [1] will be applied and most of
the details of the following proposition will be given:

{§€(-),e+0,a+0} is tight and as o =+ 0 and € + 0, 8¢ () converges

weaklx+ to the process 6(-) satisfying the diffusion equation

_(we set L = 1 for simplicity; the limit is linear in L)

n t,6(t)) 2 1n 2
(A4) adle) = \F; L‘,—(—dt +y =—5— dB,

where

s(t,a) = [og+02cos(w0t+§)]_1/2[A sin(w0t+9(t))cos(wot+§)].

Then, in Appendix 3, it will be shown that as 9y 0, the solu-

tion of (A4) converges weakly to that of (3.3) and as wg > %

the solution of (3.3) converges weakly to that of (3.5).

In D[0,»). Even though the paths are all continuous, 1t is con-
venient and traditional in the proofs of the basic theorems to as-
sume that they are elements of a space of discontinuous functions
D[0,~). The reason is that the weak* sequential compactness of
the associated measures is easier to prove there. This is purely
for mathematical convenience and need not trouble us. Of course,
the measures are concentrated on any measurable set in D[0,x)
which contains the continuous functions.

A4
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v g —

The method. The technique is close to that of [1, Section
6], the main difference being due to the fact that our ga(-) is

not a limiter and that s(t,@e) has §° dependence. We briefly recall

the definitions (from [1]) of A% and p-lim. Let EE denote
expectation conditioned on {§€(u), u<t} = {y(u), uit/ez}. Let

£€() be (progressively measurable) functions of §E(-) such that

T

supt,eElfe(t)l <« , and E|£€(t)| + 0 as € + 0, each t. Then we

3 . - s 6 — .
! say that p-lim_,,f = 0. We also say p—11m6+0f (-) = 0 if for each

§ >0, fd(-) is a (progressively measurable) function of §€(-) and
8€(-), ana sup, GEIfG(t)I < » and Elfs(t)l + 0 as § - 0. We say

14
that ¢€

€ P(A®) ana A®£® = q° if

Ef:fe (£+8) -£5 (t)
p-lim [
50 8

-g®(t)1 =0

and ge(-) is p-right continuous. See [1] for more detail.
A
Let 353’3 denote the space of real-valued functions on
R x [0,~) with compact support and whose first three x-derivatives

and first t-derivative are continuous. By Theorem 1 of (1], in

order to prove the proposition, we need to prove tightness of

A
{8%(+),e+0,a>0} and for each f(.) € ?(])"3, we need find a sequence

£€(-) € D(A®) such that

p-lim [£5() - £(85(-),)) =0
e-+0
o0
(a5)

p-lim [(A°€%(:) - (3 + ME(65(-), )1 = o,
€e+0
a0 -




e e e e e s 12 e

where A is the infinitesimal operator of the diffusion (A4). As

in [1], we will get £°(-) in the form £°(-) = £(8°(),.) + £(¢) +

fg(t), where the fi will be defined belpw. First the fe(;) will

be found, then tightness discussed. Even without tightness (A5)
implies that the finite-dimensional distributions of (A3) converge
to those of (A4) (1, Theorem 1].

Step 1. By thé stationarity and distributional properties

of y(-) and uniformity in s in bounded sets, we have

% E ga(s+§€(t)/e) = %[P{?(O)>-es+ea}-P{§(0)<-es-ea}] + O(ea) /e

=\/% . % + O(a) + O(e).

From this we can see the necessity of the L€ = L/e scaling.

A
Step 2. Fix f(-,*) € 953'3. Then (subscripts x, t on f(-,*)
denote the derivatives with respect to the first and second argu-
ments, resp.)

(a6) AT£(8%(t), &) = £,(8°(£), &) + £,(85(t) ,t)g (s(t. 8% (£IHyE (L) /€) /-

Continuing to follow the method of [1], fi(‘) is to be introduced
in a way that allows "canmellation or averaging out” of the 1/¢
term in (A6).

Define the centered function (the expectation is over §(0)
only, 8% is considered to be a parameter here) §a(-) by

3, (8%, t,55(t)/e) = ga(s(t,6€)+§€(t)/e)-Ega(s(t,ée)+}(0)/e).
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Now, define fi(-) by fi(t) = fi(é"(t),t) where

o

€
E f

o=

fi(é,t) x(é,t+1)§a(5,t+1,§€(t+1)/e)dt

00

€ 2
Etf

T,?(Ef +1) /e)dr.
£

€

~ 2 = . a
L8 ere?g (B, tve

O O

Note that p-lime_)o fi(') = 0, owing to the centering about the

mean, and the exponential correlation of the Gaussian process

.y(*). In fact, it will be shown that it follows from the estimate

(a7).

(A7) on the set {|¥(0)|<1l} or even on {|§(°)1§¢a1/2},
-a, T
|p{y(T)€E B|y(0)} - P{y(t)& B}| < Ce 1" for some

a. > 0, uniformly in B. The 0 and 1 arguments of

1
§(-) can be replaced by t and t+t, resp. Similarly,

for 1, >y >0, |p{y(rpe By i=1,2ly(0) }- ply, (1,) €B,,

“ay
i=1,2}| < ce for some a; > 0.

In the sequel the values of the constants a, > 0 and C may
change from usage to usage.

To show (A7), we note that (y(t),y(0)) are Gaussian with mean
zero and correlation exp -at, and compare the two distributions,
the first of y(1) (or y(7;),y(T,)) with initial condition y(0),

and the second the stationary distribution of y(T) (or of §(T1),§(12))a
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Estimate (A7) implies that Ifi(t)l = O(e) uniformly in w on

{|¥* (t)]<1} (the integrand of the second expression defining fi(-)
goes to zero exponentially on that set by (A7)). Define vy =
min{t: e-aT/2|§E(t)|§1}. Write

Vi

€4 _ € €
fl(e,t) = € J EthT + € J EthT,
0 vy
where B is the argument of Ei in the second expression above for i
1 fi(é,t). The first term is bounded in absolute value by eCv, and 3

the integrand of the second by C exp -al(r-vl), which is inte-

grable. Thus

(a8) lff(t)l < Cell+v,]

< cell + max(0, log|3%(t) )1,

which justifies the p-lim assertion above. To see hovw a mixing
condition such as (A7) can be used to get bounds on functions s
i such as EiF(?(t+T)) for bounded measurable F(-) .satisfying EF(y(t))

Z 0, in more general cases, see [9, Lemma 1].

Step 3. 1t can be verified that (for some version, as always)

(+) € D(A®) and that

€
£ N
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2€ € __1 A€ = (A€ >
(A9)  A"f () = - 2 £,(67(),t)g (67 (t),t,y (t)/e)

[~}

+ = fdr Eg[£, (85 () ,£+1)G (8% (1), t+7,y% (t+1) /0) 1,
0

T

- g, (s(£,0% (£))+55 (£) /e) fc.
- The first term of ﬁefi(t) = ﬁefi(ge(t),t) is (loosely) the com-
ponent of the derivative with respect to t, when 8%(-) is held

constant, and the second term contains the contributions to the

derivative due to the 8%(-) variations only. The (non-mean)

part of the first term on the right cancels the second term of
(A6). This is why £5(+) was defined as it was.

The second term of (A9) has two components which, after a
change of variable"r/e2 + 1, can be written as (aa,x denotes the

derivative of aa('))

o

5 = (8 ~ .t
(A10) fdr Eifxx(ee(t),t+52T)ga(6€(t),t+ezr,y(—7 +1) /¢)

0 €
. ga(s(tpée(t))+§(t/ez)/e) +

2]

~ - ~ ~ &
+ [dr Ezfx(ee(t),t+821)ga'x(0€(t),t+ezr,y(;§ + 1) /€)
0

© g, (8,65 ()47 (t/e%) /e)

-




Step 4. Both terms in (Al0) exist I’ the same arguments which

lead to (A8). We wish to show that the second term of (AlQ) is neg-

ligible, as well as cet an estimate which is useful for the tight-
ness argument. The fact that the support of ga'x(-) is in [-a.,a]
f and that |ga'x(x)| < C/a and the uniform boundedness of s(t,8%(t))
will be used heavily. Let I{A} denote the indicator function of

. the set A,

By the use of (A7), it can be verified that (the bounds

H below are uniform in s in bounded sets)

(All) |E§§a,x(s+§(ff + 1)/e)| < [exp —ayT + 1{|§€(tﬂ>ear/2}]c/a.

‘: We need a bound which goes to zero as ¢ -+ 0. Proceeding to get

this, we have

(A12) PUsty (55 + 1)/¢] < aly®(t)=yy} = o(ac)
€

uniformly in lyol >land t > 0.

The i
estimate (Al2) and the fact that the support of = x(-) is
(4

in [-a,a) and that it's bounded by C/a yield that the left side

of (All) is also bounded above by O(€), uniformly in |§e(t)| > 1,
ot . B
T 2 0. This and (All) yield that on the set |§%(t)] > 1 the left

side of (All) is bounded above by

(A13) lexp ~a T 4+ I{|§e(t)l>eaT/2}]1/2 Cle/a) /2,

Note that |x| < a, |x| < b imply |x| < vab,
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Integrating (Al3) with respect to 1 in [0,») and noting the bound-

edness of Iq and fx yields the upper bound

CIl + max(0, 1log|§E(t) )1 (e/a)1/2

on the second term of (Al0) when |§¥°(t)]| > 1.

In order to get a suitable bound for the case |§€(t)| <1,
split the integral of the second term in (al0) as
E e o]
[+]
e 0 €
The f is clearly O(e/a). For the other term note that for 1 > €,
0

the density of 9(57 + €), conditioned on any value of |§(t/ez)|
€
in (0,1}, is < 0(1/¥e). Thus (Al2) holds in this case (1 > ¢,

I?(t/ez)l < 1), but with O(ac) replaced by O(av¥e). Again, combin-

ing these estimates with (All) yields that the left side of (All)
is bounded above by (Al3) also when (|§€(t/e2)| < 1), but with
(e/a)1/2 174, 1/2

replaced by € /o . Integrating the bound with res-
pect to t in [0,~) yields the upper bound to the second term of

(Al0) :

(A14) CI1l + max(0, log[¥€(t)|)1e/4/al/2, !

Clearly p-lime+0,a*o(second term of (al0)) = 0.
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f Step 5. Turning our attention to the first term of (Al0), it
will be "averaged out" by use of a f;(-). This "averaging out"
will give use the second-order term of the operator of the limit
process. Define Agf(ﬁ,t) to be the expectation of the first term
of (Al0) when 8% (t) is replaced by the parameter 6. Using the

stationarity of y¥(-), we have

[+ 2}

€c(a A2 = a2~ o~
A E(B,8) = [E £ (6,t+e 1) g (6,t+e T,y (1) /e)g (s(t,B)+y(0)/e)dr

]
\~_“

[+

A - A ~E A -~
i E fxx(e,t+r)ga(e,t+r,X—i§ill)ga(s(t,e)+y(35)/e)dr.
€

I
(SN L o
N

Define £ (t) = £5(8°(t),t) by

e 2 ~ a A
(A15) £5(8,t) = Jdv{fd't[fxx(e,twnv)Ei 9o (8, t+rev 5 (BT /ey -
0 0 € €
. -4
Ja(s (t+v, 8)+7 (5Y) /e)) - ASE(B,t4v)}.2 [ dv F (t4v).
€ €
. 0

Note that when v = 0 the inner {} term {Fe(t)} is just the first term
of (Al0) (with a change of variable) minus its exponentiation and with
6% (t) replaced by 6. By a change of variables 1762 » 1, v/e? + v, and
an application of (A7) similar to that used to get the bound on lfi(t)l,
we get that the inner integral Fe(t+v) exists for each v. We will

soon show that the double integral exists. Define

He(e,t,r,v) fxx(é,t+€2T+€2V)

= = (A pac2...2 ot "
g, (8, t+eT4e V,Y(Z§+T+v)/€)ga(s(t+82v,6),§(§7+v)/g),

e m e e s e .
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An alternative representation (using the above-mentioned change of

variables) of fg(é,t) is

[+ ] [+ 2]
(a16) €’ I dv [ dt(E{H_(8,t,7,v) - EH_(8,t,T,v)].
o 0

Denote the integrand by EiB. The inner integral still exists, of

course - we olily changed variables. Recall vy =

min{v: e-av/zl?(t/ez)lil}. Write the last integral as

v

oo 1 o

22 I dv J dTt ESB + €2 I dv J dr EeB = II + 1I.
0 0 0

[+

t

Vi

Let us now evaluate II. By (A7) and the definition of vy
the absolute value of the integral in II is bounded above by some
C exp -a;(v-v;), a; > 0. Also, |E He(e,t,r,v)l < C exp -aT
for some 2 > 0. Furthermore, by (A7) and v > Vyr and for some

c > 0, a, > 0 (whose values may again change from usage to usage)

€

|ES

He (8,t,7,v) |

I A

e ~
Ef|E® , H_(8,t,1,v)]
t+e"v

1A

c Ei[exp -a;T + I{e'aT/2l9(27+v)|3;}]
€

t at/2 ~ 2
= C exp -a;T + C P{|y(;7+v)|3g / |v3y1,y(u),u§t/e }

e—aT/Z 2}

IA

C exp -a,;T + C D{|;(§7+v)||vzv1,§(u),u§t/e

IA

C exp -a;T.
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By combining the above estimates, we get that the integral in II
is bounded in absolute value by C exp —al(v—vl+1) and, consequently,
IT = o(e?).
The component I is also O(ez) but not uniformly in §€(t).
Bound the inner integral of I by

o

oo

€ € €
II dt E/B| iEtJdTIE 2
0 0 t+ev

B|

ITI.

By the arguments connected with the bound on Ifi(t)l, we get the

bound

III < Ceinll + max(0, log|§(57+v)l)]-
€

Using the concavity of max(0, loglyl),

IIT < ce?[l + max (0, log|yE(t)|)].

Since v, < C max(0, log|3€(t)|), we have that

€ 2 ~€ 2
(A17) l£5(£) | < ce®[1 + max{0,log|¥®(t) |17,
Furthermore, it can be shown that fg(') (S EZ(AE) and that

Aefg(ae(t),t) = Aefg(t) equals the term obtained by holding 8% ()

constant plus the term obtained by holding t constant (in the

calculation of the "derivative" of fg(ée(-),-). In particular,
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€ N
ﬁgfg(t) - lhegative of first term of (Al0) + Agf(8 (t),t)]

+ (term whose p-lim equal zero).
e-+0
o+0

The first term is, of course, just —Fe(t). The latter (p-lim 0)

. € I ~ ~€ _ € A A A
term is fz’x(e,t)ga(s(t,e),t,y (t)/e)/e = lex(e,t)e, where 60

ge(t) and the f; X is the derivative with respect to the 6 argu-

ment. It can be shown that this derivative can be taken under
the integral sign in (Al5). The components of the derivative which

involve fx are uniformly bounded by O(e). The other components

XX
are of the form

€ = € = =
EII[Etfxxgu,xgu + Etfxxgugu,x - Efquu,xgu Efxxgagu,x]deV 9y

with the obvious arguments for the functions. It is treated similar-
ly to the way (Al6) was treated and is bounded by (Al7) but with

e/a replacing ez.

Step 6. By combining the above estimates with f€ = f + fi + f;

(3/3% denotes 3/36, as usual),
p-1im[£5(t) - £(6%(t),t)] = 0

1im (REFE (py _ 2 s(t,85(t)) o €y ¢ (BE -
p-1imiA%ES (1) - (B + (B LB 34 af£ESe), 01 = o.

A very similar proof to that of [1, Section 6, part 2] yields

~

for each t. Then,

€e,2 A
that Aof(eft) -+ fxx(e't) ln 2/a uniformly in

ot
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by [1, Theorem 1] (see the part of Appendix 2 above step 1), the
finite-dimensional distributions of {56(-)} converge to those of
the Markov process 8(-) with infinitesimal operator
- A 2
2 s(t,0(t)) 3 ,1n 23 .
n o X a ax2 !
i.e., to (A4). This convergence of finite-dimensional distribu-
tions is good enough for many applications.
Step 7. Tightness. We skimp on details. Either [11, Lemma 1]
or [10, Theorem 2] can be used. The boundedness required in [10,
Theorem 2], can be dropped here, since finite-dimensional distribu-
tions converge (for justification, see the remarks on p. 628 of
[12]). The estimates that we need for the use of either of these
theorems are supplied by (Al4), (Al17): namely, we need that for
each T > 0
lim Iim P{sup|A®£S(t)| > N} = o,
N+ g+0 t<T
o+0
lim P sup{fi(t)+f§(t)| >8>0} = 0, each § > 0,
e-+0 t<T

all of which can be proved from (Al4), (aAl7), since for any con-

stant vy > 0, the Gaussianness and stationarity imply that

: ~ 2
11m€->0 suptiT EYIY(t/E )I = 0 w. P. 1.
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Appendix 3
Getting from (A4) to (3.3) and then to (3.5) is ruch easier

than getting (A4), since we are working with Ité equations.

Cver any finite interval [0,T], the measures in C(0,T] induced
by (A3) are absolutely continuous with respect to Wiener measure,
uniformly in % and wy [8]. Thus the sequence given by (A4) and
parametrized by og'is tight in C[0,»). Since the measure of any
limit process must also be absolutely continuous with respect to

Wiener measure, it can be shown that any limit must have the

form (3.3) even though the drift is discontinuous. A "Skorokhod
imbedding” technique can be used to fill in the details; i.e., we
can choose a weakly convergent subsequence with lirit denoted by
6(-) and we choose the probability space so that §(-;oo) + §(-)
uniformly as %o 0 on each interval [0,T], w. p. 1. The form of
the limit of the chosen convergent subsequence can easily be

seen to be (3.3) by this operation. There can only be one limit
to the original sequence, since all iimits have the form (3.3)
and the solution to (3.3) is unique in the sense of measure.

‘ Now, we go from (3.3) to (3.5) as wy * =, Again, Theorem 1

of [1] is used. As noted in the previous paragraph, the solutions

of (3.3) (parametrized by wo) are tight in C[0,»). Write wy =P

and denote the corresponding solution to (3.3) by 8°. Then, for
A ~

each f(-,:) € f(l)’:;, we need only find a sequence fP(.) € 9 (&AP)

for which (AS) (¢, a replaced by p) holds. Define (sukscripts
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t, x denote the appropriate derivatives Wwith respect to the

second and first argument of f(-,°), resp.)
2n/p

fp(t) = % EE f(ép(t+5)rt)ds'

where EE denotes conditioning on 6P(u), u < t. Then fP(*) € Z(aP)

and
2n/p
N - Pe (AP
APEP(r) = E- f EDf, (6P (t+s) ,t)as
0
Ezf(gp(t+2n/p),t)—f(ﬁp(t),t)
+

21/p

= oP p
= sl(t) + Sz(t).

Because of the bouncedness of the drift coefficient in (3.3)

and the absolute continuity with respect to Wiener measure,

(A18) E|6P(t+s)-8P(t)| » 0 as s » t, uniformly in t, p.

Thus

p-lim (£P(t)-£(6P(t),t)]1 = o0,
P

p-lim (sP(e)-£ (8P (¢), )] = o. :
p-)ao




By applying Ité's

We need only evaluate the limit of Sg(’).

lemma to Sg(-) and the process (3.3),

ZTl'/p 2."/
P
sp t = & P AP 1n 2 - A
2( ) 57 f Etfxx(e (t+s) ,t) 3 ds + g?r' f Effx(ep(t"'s) ,t) -
0

] [Jg Sin(wo(t+s)+§p(t+s))sign[cos(wo(t+s)+§p(t+s)ﬂ ?
m o ]ds ‘

= T‘f(t_). + (1),

Also, p-lim lnaZ] = 0.

p-boo
We need only check that Tg(-) has the correct (p-lim

p _ aP
[Tl(t) fxx(e (t),t)
sense)

p>o

limit. Using the Fourier series introduced in Section 3.1, write

2/ L) :
R in shetom

2n/p
EFEE fx(ép(t+s),t)% sin (e (t+s)-8P (t+s))ds

2n/p
5 EP ds fx(ep(t+s),t)%]}in(Zp(t+s)+e(t+s)+§p(t+s))

: N k
+ 2 sin(p(t+s)+0(t+s)) | Ti(i_ﬂ:r cos (2k+1) (p(t+s) +6P (t+s))]

x=1
2n/p

+ B gP f as fx(ﬁp(t-o-s),t)%[sin(p(t+s)+6(t+s)) .
0

- k )
. kjmﬁﬂ‘ﬁ cos (2k+1) (p(t+8)+6P (t+s))] 3

= 12(t) + 1D(t) + Ig’(t).
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As earlier,

p-lim [18(t)-£ (6P (t),t) 2 sin(e(t)-6P(£))] = o.
pre
By (Al8), we can replace 8P (t+s) by 6P (t) in Ig(t) without altering

the p-lim. By doing this, we see that p-lim Ig(t) = 0 for

- 00

each N,

< T < o

For each TO >0, T , there is a finite measure which

0

(uniformly in p ané t € [TO,T]) dominates the measure of 6F(t).

e "

IR

Using this and the fact that (the mean square value of the tail

of the Fourier series of sign(cos(p(t+s)+y] = q(s) over

[t,t+p/27])

2n/p - ( 1)k
b= i ]k=%+l Gk+1) cos(2k+1)(p(t+s)+y)]2ds + 0
uniformly in t, y and p, as N + «, yields that ElIg(t)I can be
made as small as desired by making N large. This and p-lim Ig =
0, each N, yields p-lim[Ig + Igl = 0.

Next, choose a weakly convergent subsequence of the process
{6P(t), t3T0>0}. Then ép(To) converges weakly to a random var-
iable §(To). As Ty * 0, the uniform absolute continuity with
respect to Wiener measure on bounded time intervals implies
that é(To) must converge to 6P(0) = 8(0) weakly as Ty, * 0. This
and the uniqueness of the solution to (3.5) imply that {gp(_)}

converges weakly to (3.5).
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